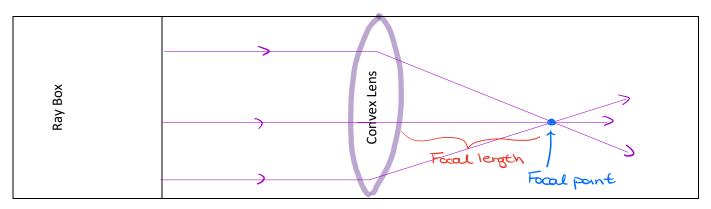

Science 8 Optics 6

Name: Date: **Block:**

- 1. Lab activity
- 2. Concave/Convex Lenses
- 3. Law of Refraction

Lab Activity

For the following, draw the rays that emerge from the ray box and through the convex and concave lens. Make sure to use a **ruler** for all straight lines.


Now take a circular concave lens and answer the following questions.

- Hold the lens a few inches from your eye to look at an object. Make sure the image is focused.
- Does the object look smaller or larger? <u>Smaller</u>

Now compare a concave MIRROR and LENS

	MIRROR	LENS
Do the rays converge or diverge?	Converge	Diverge
If the object is far from the concave		_
mirror/lens, it will appear	Inverted, smaller	Smaller, pright
If the object is close from the concave		
mirror/lens, it will appear	Opright, larger	Smaller, upright

Convex Lens

Are the rays converging (coming together) or diverging (going apart)? <u>Converge</u> Where is the focal point? <u>Behind kno</u> Can you measure the focal length? (yes) or no) If so, what is the focal length in cm? _____

Now take a **circular convex lens** and answer the following questions.

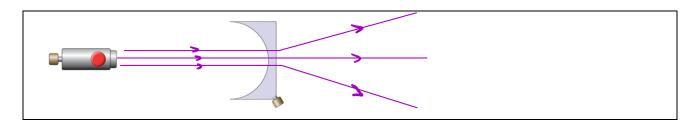
- Look through the lens at an object on the other side of the classroom.
 - Does the object look smaller or larger? <u>Smaller</u>
 - Does the object look upright or inverted (upside down)? <u>Inverted</u>
- Now look through the lens at the text on this paper. Make sure the text is in focus.
 - Does the text look smaller or larger?

Now compare a concerve MIRROR and LENS

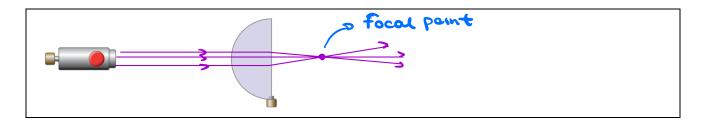
	MIRROR	LENS
Do the rays converge or diverge?	Duerge	Converge
If the object is far from the concave		
mirror/lens, it will appear	Opright, smaller	Inverted, smaller
If the object is close from the concave		
mirror/lens, it will appear	Upright, smaller	Opright, brger

Concave/Convex Lenses

Concave Lens	Convex Lens
 A lens that is <u>curved</u> in <u>Thinner</u> in the middle. 	 A lens that is <u>curved</u> at . <u>Thicker</u> in the middle.
Uses of Concave Lens:	Uses of Convex Lens:
see (. Binoculars	· Magnifying glass
way • Telescopes	• Camera (up close
• Gilasses - Nearsighted	· Gilasses - Farsighted


Activity: https://phet.colorado.edu/en/simulation/bending-light

1. Click "Prisms"


çc

- 2. Select the "multi-beam" light source.
- 3. Place a **concave lens** in front of the light source. Turn the light source on.
- 4. Sketch what you see (with a ruler!!) in the box below:

- 5. Are light rays converging or diverging? Diverging
- 6. Take a concave lens. Look at this text. The image is <u>Upright</u> (upright/upside down) and <u>Smaller</u> (smaller/larger).
- 8. Place a **convex lens** in front of the light source. Turn the light source on.
- 9. Sketch what you see (with a ruler!!) in the box below:

10. Are light rays converging or diverging? Converging

11. Take a convex lens. Look at this text. The image is ______ (upright/upside down) and

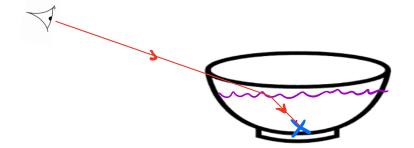
lorger (smaller/larger).

12. With the same convex lens, look at something across the room. The image is <u>upside</u> down (upright/upside down) and <u>snaller</u> (smaller/larger).

Law of Refraction

- The <u>bending</u> or <u>changing</u> <u>direction</u> of light rays as it moves from one material to another.
- Light rays move at <u>different</u> <u>speeds</u> depending on the <u>densi-ty</u> of the materials it is travelling through.

Materials:


- A small opaque bowl
- A pen

Procedure:

- 1. Place the bowl on the lab bench.
- 2. Have one partner slowly walk away from the bowl so that the X is just out of sight.
- 3. Without moving your position, have the other partner slowly pour water into the bowl.
- 4. Switch roles and repeat the experiment.
- 5. Clean up your materials.

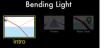
Question:

- 1. What do you notice when the water is poured into the bowl? 'x' becomes visible.
- 2. What happens when light passes from one material to another? Light refracts (berd)
- 3. Draw what you think the path of light is in this experiment:

Water

<u>Density</u>

• How tightly the molecules are packed together.



- The <u>greater</u> the density, the more <u>difficult</u> it is for the light rays to pass through.
- The more difficult, the <u>blower</u> the light rays will travel and will therefore bend
 <u>towards</u> the normal.

Activity: https://phet.colorado.edu/en/simulation/bending-light

1. Click "Intro".

- 2. Confirm that the TOP material is "Air" and the BOTTOM material is "Water".
- 3. Turn on the light!
- 4. Bring the protractor over from the bottom left box and line the "0" up with the normal (dotted line).
- 5. In the AIR, what is the **angle** between the normal and the incident ray? <u>45°</u>
- 6. In the WATER, what is the **angle** between the normal and the refracted ray? 3
- 7. Repeat steps 3-6 and fill in the following table:

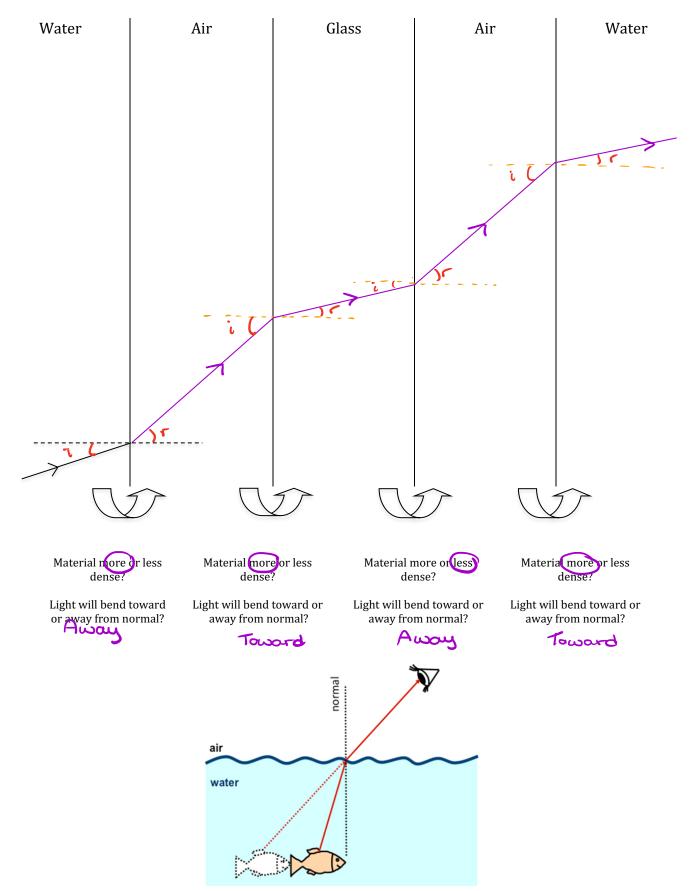
Experiment	Top material	Bottom material	Incident Angle	Refracted Angle	
1	Air	Water	45°	31.	2
2	Water	Glass	45*	39•	y less
3	Air	Glass	45°	% .	
4	Water	Air	45°	70°	Constan
5	Glass	Water	45°	52.	y greater

8. In which experiments was the beam of light going from a material that is **less dense to more dense?**

1,2,3

9. In those experiments, is the refracted angle greater or less than the incident angle?

Less, light bends towards the normal


10. In which experiments was the beam of light going from a material that is **more dense to less dense?**

4.5

11. In those experiments, is the refracted angle greater or less than the incident angle?

Greater, light bends away from the normal Conclusion: Diagram When moving from a material that is ______ dense to a material that is <u>more</u> dense, the light rays will: **~~**air 1. Slow down glass 2. Bend towards the rormal Diagram: When moving from a material that is ______dense to a material that is <u>dense</u>, the light rays will: 1. speed up glass air 2. Bend away from normal.

Draw a sketch of how light behaves as it passes from left to right through the following materials. Remember there is a NORMAL at every boundary!

