Science 8 Optics 6

Name: Date: Block:

- 1. Lab activity
- 2. Concave/Convex Lenses
- 3. Law of Refraction

Lab Activity

For the following, draw the rays that emerge from the ray box and through the convex and concave lens. Make sure to use a **ruler** for all straight lines.

Concave Lens

Ray Box	Concave Lens	
---------	--------------	--

Are the rays converging (coming together) or diverging (going apart)?

Where is the focal point? _____

Now take a **circular concave lens** and answer the following questions.

- Hold the lens a few inches from your eye to look at an object. Make sure the image is focused.
- Does the object look smaller or larger? ______

Now compare a concave MIRROR and LENS

	MIRROR	LENS
Do the rays converge or diverge?		
If the object is far from the concave		
mirror/lens, it will appear		
If the object is close from the concave		
mirror/lens, it will appear		

Convex Lens

Ray Box	Convex Lens	
---------	-------------	--

Are the rays converging (coming together) or diverging (going apart)?

Where is the focal point? _____

Can you measure the focal length? (yes or no) If so, what is the focal length in cm? ______

Now take a circular convex lens and answer the following questions.

- Look through the lens at an object on the other side of the classroom.
 - Does the object look smaller or larger?
 - Does the object look upright or inverted (upside down)? ______
- Now look through the lens at the text on this paper. Make sure the text is in focus.
 - Does the text look smaller or larger?
 - Does the text look upright or inverted (upside down)? ______

Now compare a concave MIRROR and LENS

	MIRROR	LENS
Do the rays converge or diverge?		
If the object is far from the concave		
mirror/lens, it will appear		
If the object is close from the concave		
mirror/lens, it will appear		

Concave/Convex Lenses

Concave Lens	Convex Lens
• A lens that is	• A lens that is
• in the middle.	• in the middle.
Uses of Concave Lens:	Uses of Convex Lens:
Uses of Concave Lens: •	Uses of Convex Lens: •
Uses of Concave Lens: • •	Uses of Convex Lens: • •
Uses of Concave Lens: • •	Uses of Convex Lens: • •

Activity: https://phet.colorado.edu/en/simulation/bending-light

1. Click "Prisms"

- 2. Select the "multi-beam" light source.
- 3. Place a **concave lens** in front of the light source. Turn the light source on.
- 4. Sketch what you see (with a ruler!!) in the box below:

5. Are light rays converging or diverging?

- Take a concave lens. Look at this text. The image is ______ (upright/upside down) and ______ (smaller/larger).
- 8. Place a **convex lens** in front of the light source. Turn the light source on.
- 9. Sketch what you see (with a ruler!!) in the box below:

10. Are light rays converging or diverging?

11. Take a convex lens. Look at this text. The image is ______ (upright/upside down) and

(smaller/larger).

12. With the same convex lens, look at something across the room. The image is ______

(upright/upside down) and ______ (smaller/larger).

Law of Refraction

- The ______ or _____ of light rays as it moves from one material to another.
- Light rays move at depending on the of the materials it is travelling through.

Materials:

- A small opaque bowl
- A pen

Procedure:

- 1. Place the bowl on the lab bench.
- 2. Have one partner slowly walk away from the bowl so that the X is just out of sight.
- 3. Without moving your position, have the other partner slowly pour water into the bowl.
- 4. Switch roles and repeat the experiment.
- 5. Clean up your materials.

Question:

- 1. What do you notice when the water is poured into the bowl?
- 2. What happens when light passes from one material to another? ______
- 3. Draw what you think the path of light is in this experiment:

Water

<u>Density</u>

• How tightly the molecules are packed together.

- The ______ the density, the more ______ it is for the light rays to pass through.
- The more difficult, the ______ the light rays will travel and will therefore bend
 ______ the normal.

Activity: <u>https://phet.colorado.edu/en/simulation/bending-light</u>

1. Click "Intro".

- 2. Confirm that the TOP material is "Air" and the BOTTOM material is "Water".
- 3. Turn on the light!
- 4. Bring the protractor over from the bottom left box and line the "0" up with the normal (dotted line).
- 5. In the AIR, what is the **angle** between the normal and the incident ray?
- 6. In the WATER, what is the **angle** between the normal and the refracted ray?
- 7. Repeat steps 3-6 and fill in the following table:

Experiment	Top material	Bottom material	Incident Angle	Refracted Angle
1	Air	Water		
2	Water	Glass		
3	Air	Glass		
4	Water	Air		
5	Glass	Water		

- 8. In which experiments was the beam of light going from a material that is less dense to more dense?
- 9. In those experiments, is the refracted angle greater or less than the incident angle?
- 10. In which experiments was the beam of light going from a material that is **more dense to less** dense?
- 11. In those experiments, is the refracted angle greater or less than the incident angle?

Conclusion:

When moving from a material that is dense to a material that is dense, the light rays will:	Diagram:
1.	air glass
2.	
	Diagram
When moving from a material that is dense to a material that is dense. the light rays will:	Diagranii.

Iuy 9

1.

2.

glass air

Draw a sketch of how light behaves as it passes from left to right through the following materials. Remember there is a NORMAL at every boundary!

