1. Wave Model of Light
2. Visible Light
3. Electromagnetic Spectrum

Wave Model of Light

- A \qquad is a way for scientists to explain what they see.
- The Wave Model of Light pictures light travelling as \qquad .
- Light waves travel in \qquad lines.

Activity: https://phet.colorado.edu/en/simulation/waves-intro

1. Click "light" at the bottom of the page to set up the light wave simulation.
2. Click the green button to turn the light on.

3. To have a graph, click the checkbox next to "Graph".
4. After the graph has appeared and stabilized, pause the simulation.
5. Click and drag the measuring tape to the graph. Place the orange " + " sign closest to the measuring tape on top of a wave crest. Next, click and drag the orange " + " sign at the end of the measuring tape to the closest wave crest.

6. What is the wavelength for green? \qquad
7. Complete the following table:

Colour	Wavelength
Red	
Orange	
Yellow	
Green	
Blue	
Purple	

8. Set the colour to whatever you prefer.
9. Next, set to MAXIMUM amplitude. What do you notice about the colour from the light source?
10. Set to MINIMUM amplitude. What do you notice about the colour from the light source?

Red

Orange
Yellow

віне vorns
indigonnmon violet MOMNM

Which colour has the longest wavelength?

Which colour has the shortest wavelength?

Different wavelengths = different degree of bending

- A \qquad is used to separate the colours.
- The different \qquad of the walls cause the bending of light.
- The longer the wavelength, the \qquad the light will bend.
- The shorter the wavelength, the \qquad the light will bend.
- Reflection occurs when a light wave strikes an object and bounces off. When we see an object, we are actually seeing the light reflected off that object!

- Some colours are \qquad and seen and other colours are \qquad .
- For example: To see a blue T-shirt, we are seeing:

How do we see colours?

- Only \qquad colours are needed to produce all the colours of the rainbow!
https://phet.colorado.edu/sims/html/color-vision/latest/color-vision en.html
Primary colours of PAINT Primary colours of LIGHT
- When the primary colours of light (\qquad , \qquad and \qquad) are combined together, produce the secondary colours of light: \qquad and
\qquad _.

Electromagnetic Spectrum:

Longer or shorter?
\qquad wavelength \qquad wavelength

Higher or lower?
\qquad frequency \qquad frequency

Complete the following table with a minimum of 2 uses and 2 dangers for each electromagnetic radiation below.

Radio Waves							
Uses:	Picture:						
Dangers:							

| Microwaves | | | |
| :--- | :--- | :--- | :--- | :--- |
| Uses: | Picture: | | |
| Dangers: | | | |

Infrared Waves

Uses:

Dangers:

Gamma Rays		
Uses:	Picture:	
Dangers:		

