Optics 2

Name: Date: Block:

- 1. Wave Model of Light
- 2. Visible Light
- 3. Electromagnetic Spectrum

Wave Model of Ligh	ıt	t
--------------------	----	---

- A ______ is a way for scientists to explain what they see.
- The Wave Model of Light pictures light travelling as
- Light waves travel in _____ lines.

Activity: https://phet.colorado.edu/en/simulation/waves-intro

- 1. Click "light" at the bottom of the page to set up the light wave simulation.
- 2. Click the green button to turn the light on.

- 3. To have a graph, click the checkbox next to "Graph".
 ☐ Graph
 ☐ Screen
- 4. After the graph has appeared and stabilized, pause the simulation.
- 5. Click and drag the measuring tape to the graph. Place the orange "+" sign closest to the measuring tape on top of a wave crest. Next, click and drag the orange "+" sign at the end of the measuring tape to the closest wave crest.
- 6. What is the wavelength for green? _____
- 7. Complete the following table:

Colour	Wavelength
Red	
Orange	
Yellow	
Green	
Blue	
Purple	

- 8. Set the colour to whatever you prefer.
- 9. Next, set to MAXIMUM amplitude. What do you notice about the colour from the light source?
- 10. Set to MINIMUM amplitude. What do you notice about the colour from the light source?

Different wavelengths = different degree of bending

- A _____ is used to separate the colours.
- The different _____ of the walls cause the bending of light.
- The longer the wavelength, the _____ the light will bend.
- The shorter the wavelength, the _____ the light will bend.

Visible Light

• Reflection occurs when a light wave strikes an object and bounces off. When we see an object, we are actually seeing the light reflected off that object!

- Some colours are _____ and seen and other colours are _____.
 - o For example: To see a blue T-shirt, we are seeing:

How do we see colours?

• Only _____ colours are needed to produce all the colours of the rainbow!

https://phet.colorado.edu/sims/html/color-vision/latest/color-vision en.html

 When the primary colours of light (_____, ____, and _____) are combined together, produce the secondary colours of light: _____, and _____, and

Electromagnetic S	spectrum
--------------------------	----------

Electromagnetic Spectrum:

Longer or shorter?
_____ wavelength _____ wavelength

Higher or lower?
_____ frequency _____ frequency

Complete the following table with a minimum of 2 uses and 2 dangers for each electromagnetic radiation below.

Radio Waves	
Uses:	Picture:
Dangers:	

Microwaves	
Uses:	Picture:
Dangers:	

Infrared Waves	
Uses:	Picture:
Dangers:	

Ultraviolet Rays		
Uses:	Picture:	
Dangers:		

