Science 8
Optics I

Name:
Date:

Block:

1. Optics Observations
2. Waves

Optics Observations

Station \#1: Prisms

Place one prism in front of a ray box. Can you find the rainbow?

What are the colours of the rainbow?

Station \#2: Lenses

Use a ray box and see what happens when you place a concave (caved in) lens in front of the light. Draw what you see.

Use a ray box and see what happens when you place a convex (curved out) lens in front of the light. Draw what you see.

Station \#3: Mirrors

Use a ray box and see what happens when you place a concave (caved in) mirror in front of the light. Draw what you see.
(as)

Use a ray box and see what happens when you place a convex (curved out) mirror in front of the light. Draw what you see.

Station \#4: Curved Mirrors \& Lenses

A concave mirror is a mirror that is caved in. Hold it close to your face.
Does the image seem: larger smaller // upright upside down
Now hold the concave mirror an arm's length away.

- Does the image seem: larger

A convex mirror is a mirror that is curved out. Hold it close to your face.

- Does the image seem: larger smaller
 upside down
Now hold the convex mirror an arm's length away.
- Does the image seem: larger smaller // upright upside down

A concave lens is a lens that is caved in. Use it to look at this text.
Does the image seem: larger \square //
upside down

Now hold up the concave lens to look at an object on the other side of the room.

- Does the image seem: larger

upside down

A convex lens is a lens that is curved out. Use it to look at this text.

- Does the image seem: larger smaller // upright upside down

Now hold the convex lens to look at an object on the other side of the room.

- Does the image seem: larger

// upright
upside down

Waves

Can you name a few waves?
-hand wave -sand wore -sadi aware

- Ocean ware - heat wave - microwave

What is a wave?

- Disturbance or movement that transfers energythrough matter or space.
- Doesn't cause any position change \qquad .
- Example: wave through a crowd, but each person still stays in their seat
- This energy must move through a \qquad medium -.
- The medium can be solid , liquid \qquad or \qquad .
- Examples of mediums:

$$
\text { ocean wave }=\text { medium is water }
$$

Typically, there are two types of waves:

Transverse Wave	Compression Wave
Definition: • Particles mare up and down	Definition: • A wave where the particles mare left to right
Example: Water waves	Example: slinky
Diagram:	Diagram:

Crest: the \qquad highest \qquad point in a wave.

Trough: the \qquad lowest \qquad point in a wave.

Label the crest and trough on the following diagram:

Rest Position: the level of water \qquad
\qquad the \qquad and \qquad -. Label the rest position on the following diagram:

Amplitude: the \qquad of the \qquad or depth \qquad of the
 as measured from its \qquad
\qquad position —.

Label the amplitude on the following diagram:

Wavelength: the \qquad from to \qquad or
 trough \qquad .

Label the wavelength on the following diagram:

Label the following diagram:

- Crest
- Trough
- Rest position
- Amplitude
- Wavelength

Frequency:

- How often does something occur?
- The number of \qquad repetitive motions in a given time.

Frequency is measured in hertz(H) or cycles per second.

(a)

Frequency: $\perp \mathrm{Hz}$

(b)

Frequency: 2 Hz
)
\qquad

WAVELENGTH: long /short
FREQUENC: high low

When one value increases as the other decreases, this is called an inverse relationship.

Bouncer A:

Bouncer A:	Bouncer B:
Number of bounces:	Number of bounces:
Time:	Time:
Frequency (bounces per second):	

Who had the higher frequency?

Use the following equation to calculate frequency (in hertz) for each of the examples below:

$$
\text { Frequency }=\text { cycles per second } \quad 1 \mathrm{~min}=60 \mathrm{sec}
$$

a) Pendulum: 24 swings in 6 seconds.

$$
f=\frac{\text { cycles }}{\text { sec }}=\frac{24 \text { swings }}{6 \mathrm{sec}}=4 \mathrm{~Hz}
$$

b) Merry-go-round: 12 revolutions per 2 min .
$2 \min =120 \mathrm{sec} f=\frac{\text { cycles }}{\sec }=\frac{12 \text { revolutions }}{120 \mathrm{sec}}=0.1 \mathrm{H}_{2}$
c) Flashing red light at an intersection: 30 flashes in 0.5 min .
$0.5 \min =30 \mathrm{sec} f=\frac{\text { cycles }}{\text { sec }}=\frac{30 \text { flashes }}{30 \mathrm{sec}}=1 \mathrm{~Hz}$
d) Heart rate: 18 beats per 20 second.

$$
f=\frac{\text { cycles }}{\sec }=\frac{18 \text { beats }}{20 \mathrm{sec}}=0.9 \mathrm{~Hz}
$$

e) Car drive shaft: 2000 rpm (revolutions per minute)

$$
f=\frac{\text { cycles }}{\text { sec }}=\frac{2000 \mathrm{rpm}}{60 \mathrm{sec}}=33.3 \mathrm{~Hz}
$$

Characteristics of waves

Use the information in the graphs to answer the questions.

1. How long is the wavelength of the wave below? 4 m
2. How large is the amplitude of the wave below? _ 2 m \qquad

3. Which wave below has the smaller amplitude, A or B ? B
4. Which wave carries more energy, A or B ? A
\qquad wave \longrightarrow more energy wave \rightarrow higher amplitude.

5. What is the same for waves X and Y below: amplitude, wavelength, or frequency? amplitude \qquad
6. Which wave has a greater frequency, X or Y ? \qquad
7. Which wave has a longer wavelength, X or Y ? X

