Science 8 Optics I

Name:	Ken
Date:	1.0-2
Block:	

Optics Observations
Waves

Optics Observations

Station #1: Prisms

Place one prism in front of a ray box. Can you find the rainbow?

What are the colours of the rainbow?

Red Orange Yellow Green Blue Indiga Violet

Station #2: Lenses

Use a ray box and see what happens when you place a **<u>concave (caved in) lens</u>** in front of the light. Draw what you see.

Use a ray box and see what happens when you place a **<u>convex (curved out) lens</u>** in front of the light. Draw what you see.

Station #3: Mirrors

Use a ray box and see what happens when you place a **<u>concave (caved in) mirror</u>** in front of the light. Draw what you see.

Use a ray box and see what happens when you place a **<u>convex (curved out) mirror</u>** in front of the light. Draw what you see.

Station #4: Curved Mirrors & Lenses

A concave mirror is a mirror that is caved in. Hold it close to your face. Does the image seem: (*larger*) smaller // upright upside down Now hold the concave mirror an arm's length away. • Does the image seem: *larger* (smaller) // upright (upside down A convex mirror is a mirror that is curved out. Hold it close to your face. Does the image seem: *larger* smaller upright upside down • // Now hold the convex mirror an arm's length away. Does the image seem: *larger* smaller upright upside down • // A concave lens is a lens that is caved in. Use it to look at this text. Does the image seem: *larger* (smaller) // upright upside down Now hold up the concave lens to look at an object on the other side of the room. Does the image seem: *larger* smaller) upside down • // upright A **convex lens** is a lens that is curved out. Use it to look at this text. Does the image seem: *larger* upside down smaller upright • // Now hold the convex lens to look at an object on the other side of the room. upright upside down Does the image seem: *larger* smaller • //

Waves

Can you name a few waves?

-hand wave -sound wouve -radio wave -ocean wouve -heat wouve -microwave

What is a wave?

- Disturbance or movement that <u>knowsfers</u> energy hrough matter or space.
- Doesn't cause any position change.
 - · Example: wave through a crowd, but each person still stays in their seat

- This energy must move through a <u>medium</u>.
- The medium can be <u>solid</u>, <u>liquid</u>, or <u>qas</u>.
 - Examples of mediums:

ocean wove = medium is water

Typically, there are two types of waves:

Transverse Wave	Compression Wave
Definition:	Definition:
· Particles move up and down	· A wave where the particles
•	move left to right
Example: Water woures	Example: Slinky
Diagram:	Diagram:
	wellell

Characteristics of a wave:

Trough: the ______ point in a wave.

Label the crest and trough on the following diagram:

Label the rest position on the following diagram:

Amplitude: the	height	_ of the	eor	depth	of the	travah	
as measured from	its <u>rest</u>	positio	<u>n</u> .	-		2.	

Label the amplitude on the following diagram:

Label the wavelength on the following diagram:

Label the following diagram:

Frequency:

- How often does something occur?
- The number of <u>repetitive</u> in a given time.

Frequency is measured in here (Hz) or cucles per second.

When one value increases as the other decreases, this is called an <u>inverse</u> relationship.

Frequency = cycles = # bounces

Bouncer A:	Bouncer B:
Number of bounces:	Number of bounces:
Time:	Time:
Frequency (bounces per second):	Frequency (bounces per second):

Who had the higher frequency?

Characteristics of waves

Use the information in the graphs to answer the questions.

