## Science 8 <br> Optics I

Name:
Date:
Block:

1. Optics Observations
2. Waves

## Optics Observations

## Station \#1: Prisms

Place one prism in front of a ray box. Can you find the rainbow?

What are the colours of the rainbow?

## Station \#2: Lenses

Use a ray box and see what happens when you place a concave (caved in) lens in front of the light. Draw what you see.

|  | $\begin{aligned} & \text { n } \\ & \tilde{J} \\ & 0 \\ & \text { స్ } \\ & 0 \\ & 0 \end{aligned}$ |
| :---: | :---: |

Use a ray box and see what happens when you place a convex (curved out) lens in front of the light. Draw what you see.

| $\begin{aligned} & \stackrel{x}{0} \\ & \infty \\ & \underset{\sim}{c} \end{aligned}$ | $\begin{aligned} & \text { n } \\ & \underset{U}{x} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| :---: | :---: |

## Station \#3: Mirrors

Use a ray box and see what happens when you place a concave (caved in) mirror in front of the light. Draw what you see.

|  | $\begin{aligned} & \tilde{0} \\ & \dot{y} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| :---: | :---: |

Use a ray box and see what happens when you place a convex (curved out) mirror in front of the light. Draw what you see.

|  | $\begin{aligned} & \dot{y} \\ & \sum_{x}^{x} \\ & \Delta \\ & 0 \\ & 0 \end{aligned}$ |
| :---: | :---: |

## Station \#4: Curved Mirrors \& Lenses

A concave mirror is a mirror that is caved in. Hold it close to your face.
Does the image seem: larger smaller // upright upside down
Now hold the concave mirror an arm's length away.

- Does the image seem: larger smaller // upright upside down

A convex mirror is a mirror that is curved out. Hold it close to your face.

- Does the image seem: larger smaller // upright upside down

Now hold the convex mirror an arm's length away.

- Does the image seem: larger smaller // upright upside down

A concave lens is a lens that is caved in. Use it to look at this text.
Does the image seem: larger smaller // upright upside down
Now hold up the concave lens to look at an object on the other side of the room.

- Does the image seem: larger smaller // upright upside down

A convex lens is a lens that is curved out. Use it to look at this text.

- Does the image seem: larger smaller // upright upside down

Now hold the convex lens to look at an object on the other side of the room.

- Does the image seem: larger smaller // upright upside down


## Waves

Can you name a few waves?

## What is a wave?

- Disturbance or movement that $\qquad$ through matter or space.
- Doesn't cause any $\qquad$ .
- Example:

- This energy must move through a $\qquad$ .
- The medium can be $\qquad$
$\qquad$ or $\qquad$ .
- Examples of mediums:

Typically, there are two types of waves:

| Transverse Wave | Compression Wave |
| :--- | :--- |
| Definition: <br> $\bullet$ | Definition: <br> $\bullet$ |
| Example: | Example: |
| Diagram: | Diagram: |
|  |  |

Crest: the $\qquad$ point in a wave.

Trough: the $\qquad$ point in a wave.

Label the crest and trough on the following diagram:


Rest Position: the level of water $\qquad$ the $\qquad$ and $\qquad$ .

Label the rest position on the following diagram:


Amplitude: the $\qquad$ of the $\qquad$ or $\qquad$ of the $\qquad$ as measured from its $\qquad$ —.

Label the amplitude on the following diagram:


Wavelength: the $\qquad$ from $\qquad$ to $\qquad$ or $\qquad$

Label the wavelength on the following diagram:


## Label the following diagram:

- Crest
- Trough
- Rest position
- Amplitude
- Wavelength


## Frequency:

- How often does something occur?
- The number of $\qquad$ in a given time.

Frequency is measured in $\qquad$ (_) _) or $\qquad$
$\qquad$ .

(a)

Frequency: ___ Hz

(b)

Frequency:___ Hz
$\qquad$


WAVELENGTH: long / short

FREQUENCY: high / low

| Bouncer A: | Bouncer B: |
| :--- | :--- |
| Number of bounces: | Number of bounces: |
| Time: | Time: |
| Frequency (bounces per second): | Frequency (bounces per second): |
|  |  |

Who had the higher frequency?

Use the following equation to calculate frequency (in hertz) for each of the examples below:
Frequency = cycles per second
a) Pendulum: 24 swings in 6 seconds.
b) Merry-go-round: 12 revolutions per 2 min .
c) Flashing red light at an intersection: 30 flashes in 0.5 min .
d) Heart rate: 18 beats per 20 second.
e) Car drive shaft: 2000 rpm (revolutions per minute)

## Characteristics of waves

Use the information in the graphs to answer the questions.

1. How long is the wavelength of the wave below? $\qquad$
2. How large is the amplitude of the wave below? $\qquad$

3. Which wave below has the smaller amplitude, A or B ? $\qquad$
4. Which wave carries more energy, A or B ? $\qquad$


5. What is the same for waves $X$ and $Y$ below: amplitude, wavelength, or frequency?
6. Which wave has a greater frequency, X or Y ? $\qquad$
7. Which wave has a longer wavelength, $X$ or $Y$ ? $\qquad$

Wave X



