

Name: Date: Block:

- 1. Intro to Microscopes
- 2. Field of View
- 3. Microscope Safety
- 4. Drawing a Biological Diagram

#### Intro to Microscopes

#### Early Microscopes:

- Built in the late \_\_\_\_\_ and early \_\_\_\_\_
- One of the first people to build a microscope was named \_\_\_\_\_\_.

### THE COMPOUND LIGHT MICROSCOPE:

- Usually used in science classes and medical laboratories.
- Label the parts of the microscope!



#### Parts of the Microscope

| <u>Part</u>       | Function                                     |
|-------------------|----------------------------------------------|
| Eyepiece          |                                              |
|                   | Supports the eyepiece.                       |
| Coarse focus knob |                                              |
|                   | Brings an object into focus at high power.   |
| Objective lenses  |                                              |
|                   | Holds the three objective lenses.            |
| Stage             |                                              |
|                   | Supplies the light needed to view the slide. |
| Base              |                                              |

## Magnification:

- Contains two sets of lenses
- Eyepiece lens \_\_\_\_\_
- Objective lenses:
  - Low-power objective lens \_\_\_\_\_
  - Medium-power objective lens \_\_\_\_\_
  - High-power objective lens \_\_\_\_\_



## Eyepiece lens x Objective lens = Total magnification of microscope

Example:

**Total** magnification of medium-power lens =

An eyepiece on a microscope has a magnification of  $10\times$ . The objective lenses on the microscope have magnifications of  $4\times$  at low power,  $10\times$  at medium power, and  $40\times$  at high power.

(a) Using the information how would you combine lenses on a microscope if you wanted to magnify an object  $40 \times$ ?

(b)How would you combine lenses if you wanted to magnify an object 100×?

(c) How would you combine lenses if you wanted to magnify an object  $400 \times$ ?

If a compound microscope has an eyepiece of  $15 \times$  magnification and you select an objective lens with a power of  $40 \times$ , what is the total magnification of the object?

## Field of View

- Describes how much of the specimen you will be able to see under the microscope.
- As the \_\_\_\_\_\_ gets greater, the FOV gets \_\_\_\_\_\_.
- You are "\_\_\_\_\_" to the specimen.
- You will be able to see \_\_\_\_\_\_ of the specimen, but the image you see will be in greater





#### **Microscope Safety**

- 1. Always carry the microscope with \_\_\_\_\_ hands one on the \_\_\_\_\_\_ and one underneath the \_\_\_\_\_\_ of the microscope.
- 2. Hold it up so that it does not hit tables or chairs.
- 3. Never swing the microscope.
- 4. Do not touch the \_\_\_\_\_\_. If they are dirty, please raise your hand and ask the teacher for the special lens paper to clean the lenses.
- 5. Be cautious when handling the microscope \_\_\_\_\_\_ and \_\_\_\_\_. Please do not handle broken glass notify teacher.
- 6. If using a microscope with a \_\_\_\_\_\_, turn \_\_\_\_\_ the light by the switch and then unplug the microscope.
- Use the \_\_\_\_\_\_ power lens first and use the \_\_\_\_\_\_ focus knob to focus the image. Then use the \_\_\_\_\_\_ power lens and use the \_\_\_\_\_\_ focus knob to make further adjustments.

To further magnify the image, switch to the \_\_\_\_\_ power lens and use the \_\_\_\_\_\_ \_\_\_\_\_ knob.

- Always clean slides and microscope when finished. Store microscope set on the \_\_\_\_\_\_ power lens with the \_\_\_\_\_\_ turned down to its lowest position and furthest away from the lens (using the coarse adjustment knob).
- 9. Wrap the cord around the microscope safely. Cover microscope with a \_\_\_\_\_\_ and return microscope to storage if so requested.

#### Drawing a Biological Diagram

#### **Rules:**

- 1. Use a \_\_\_\_\_\_.
- Make sure that a \_\_\_\_\_\_ is used to draw a \_\_\_\_\_\_ and \_\_\_\_\_
  line.
- 3. Any words should be \_\_\_\_\_\_ the diagram.
- 4. Try to provide as much \_\_\_\_\_\_ in the diagram as possible.
- 5. Ensure that the diagram has a proper \_\_\_\_\_\_ and the \_\_\_\_\_\_ is included.

#### Here are some examples:



## In the lab!!

1. Write the each of the following terms on a sticky note provided.

| Eyepiece | Arm         | Revolving nose piece | Objective lenses |
|----------|-------------|----------------------|------------------|
| Stage    | Stage clips | Light source         | Base             |
|          |             |                      |                  |

- 2. Label your microscope using the sticky notes.
- 3. Show your teacher! Get them to initial here: \_\_\_\_\_
- 4. Now you may begin the microscope activity on the following page!

# Microscope Activity!!

| Step 1. Get a microscope ready.                                                        |  |  |
|----------------------------------------------------------------------------------------|--|--|
| Make sure the low power objective lens is in position.                                 |  |  |
| What is your <u>total</u> magnification?                                               |  |  |
| Step 2. Take a slide prepared by your teacher.                                         |  |  |
| Step 3. Place the slide on the stage and clip it in place with stage clips.            |  |  |
| Look through the eyepiece to ensure that specimen is in your field of view.            |  |  |
| Step 4. Turn the <u>coarse focus knob</u> to focus the image.                          |  |  |
| Step 5. Move the slide to the left. In which <u>direction</u> does the specimen move?  |  |  |
| Step 6 Move the slide away from you. In which <u>direction</u> does the specimen move? |  |  |
| Step 7. Change to <u>medium power objective lens</u> .                                 |  |  |
| What is your total magnification?                                                      |  |  |
| Step 8. Turn the coarse focus knob to further focus the image.                         |  |  |
| Step 9. Draw what you see in the space below:                                          |  |  |
|                                                                                        |  |  |

Step 11. Turn off your microscope. Wrap the cord around your microscope. Before you put the microscope cover on, show your teacher! **Get them to initial here:** 

#### Microscope Questions:

1. Match the microscope part to the correct function.

| Function                                        | Microscope part         |
|-------------------------------------------------|-------------------------|
| 1. holds the slide in place                     | (a) objective lens      |
| 2. lens closest to the eye                      | (b) eyepiece            |
| 3. supplies the light needed to view the object | (c) revolving nosepiece |
| 4. allows you to switch magnifications          | (d) coarse focus knob   |
| 5. magnifies the object                         | (e) stage clips         |
| 6. supports the microscope slides               | (f) fine focus knob     |
| 7. used for focusing at low power               | (g) light source        |
| 8. used for focusing at high power              | (h) stage               |

2. Name three parts of a compound light microscope that have names similar to the names of human body parts.

| a) b) | c) |
|-------|----|
|-------|----|

- 3. What is the proper way to carry a microscope?
- 4. Name each part identified with a letter in the photograph of the compound light microscope below.



- 5. Why do you start with the low-power objective lens when focusing an image?
- 6. If an objective lens of a compound light microscope has a magnification power of 40x, why is the image magnified 400x?