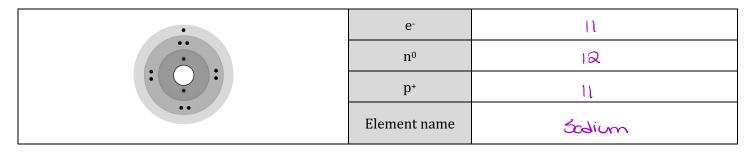
Science 8 Atomic Theory 6: Bohr Model

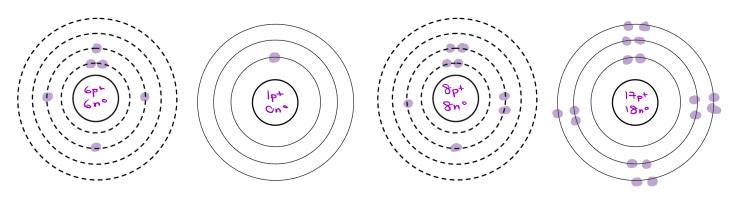
<u>Where</u> do we find the electrons in an atom?	 Before the development of the Bohr model by Neils Bohr, there was no explanation for why the negatively charged electrons didn't <u>croshine</u> the positively charged protons We now know that we find the electrons in the <u>cortex shells</u> surrounding the <u>hockers</u> of the atom, also known as electron <u>energy levels</u>
<u>How many</u> <u>electrons</u> fit in each energy level?	 The first electron shell holds a maximum of <u>2</u> electrons. Each of the next shells holds a maximum of <u>8</u> electrons. Shells cannot be created until the lower shell is <u>completely filled</u>. <u>Valence</u> <u>electrons</u> are the outermost electrons: the electrons in the shell farthest from the nucleus. Elements in the same <u>accep</u> or <u>family</u> have the same number of valence electrons.
How do we draw a <u>Bohr</u> <u>model</u> ?	 Protons (p or p+) and neutrons (n or n⁰) are written in the middle, representing the Electrons (e or e) are drawn in the shells surrounding the nucleus: 2 in the first shell, then 8 in the following shell(s) Electrons are added starting at the top and moving clockwise Electrons are added <u>lot a time</u> before they are up

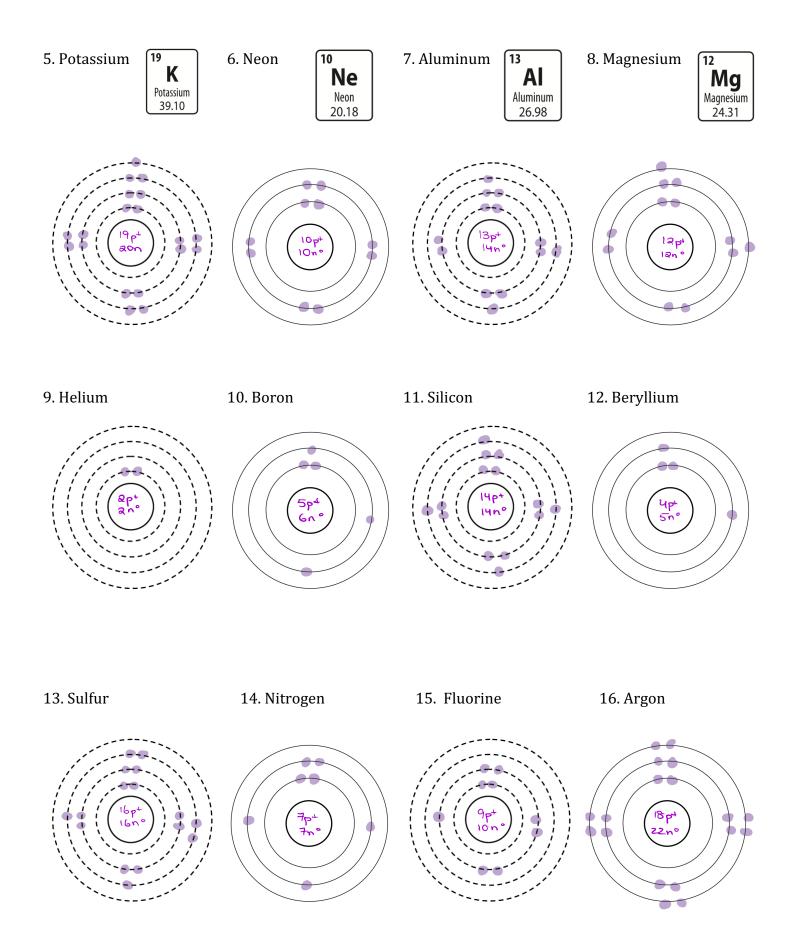
Name: Key Date:

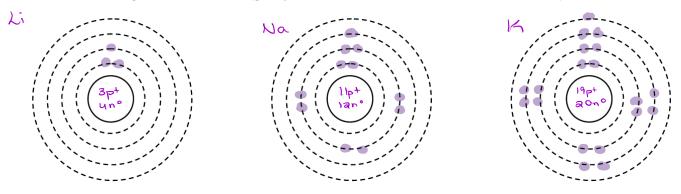

Block:

Examples:							
Element	Helium	Lithium	Beryllium	Boron			
Mass	Ч	7	9				
Atomic #	2	3	Ч	5			
n ⁰	2 n°	4n°	5n°	6n°			
p+	æ _P ⁺ 2e [−]	3pt	4 p ⁺				
e⁻	2e ⁻	3e ⁻	4e-	5p ⁺ 5e ⁻			
Bohr model	Qp ¹ Re ⁻	(dp ⁺ un ^o)	(Lipt 5n.	(5p ⁴ 6n ⁰			

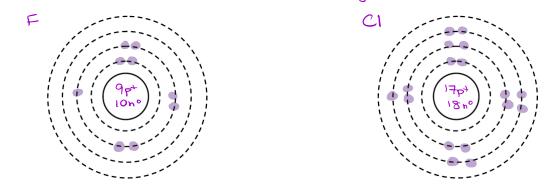
<u>Practice:</u> Fill in the blanks for the following atoms:


	Element name	Magnesium
	Atomic #	12
	Atomic mass	RA
$ \begin{pmatrix} 12 p^+ \\ 12 n^\circ \end{pmatrix} $	e-	12
	n ⁰	12
	p+	12
	# valence e ⁻	2


	Element name	Phosphoru S
	Atomic #	15
	Atomic mass	31
$ \begin{array}{c} 15 \text{ p}^+\\ 16 \text{ n}^\circ \end{array} $	e-	15
	n ⁰	16
	p+	15
	# valence e-	5


Practice:complete the Bohr models for the following elements1. Carbon2. Hydrogen3. Oxygen

4. Chlorine


Draw the Bohr diagrams for Li, Na, K (group ____, called the <u>Alkali metals</u>)

What do you notice about the **number of electrons** on the OUTERMOST shell?

They all have I valence electron (they are all in grap I)

Draw the Bohr diagrams for F and Cl (group 17, called the <u>halogen</u>)

What do you notice about the **number of electrons** on the OUTERMOST shell?

How many electrons do you think are on the outermost shell for the following sets of elements?

What is the <u>term</u> for the electrons on the outermost shell?

Valence electrons