Physics VI

Name: Date: Block:

- 1. Power
- 2. Sustainability
- 3. Generating Electrical Energy

D	\sim	•	7	1

	rs that we are able to measure elect and	icai elleigy.	
These two ways of meas	suring out electrical energy is related	d to the	output by the load
,		that	is

- - o 1 kW = 1000 watts

Appliances all have a power rating (the rate that they use energy).

Table 3.2 Typical Power Ratings of Appliances

Appliance	Typical Power Rating (kW)
Clock	0.0050
Clothes dryer	5.0
Washing machine	0.50
Coffee maker	1.0
Computer	0.20
Dishwasher	1.8
Freezer	0.34
Microwave oven	1.5
Toaster	1.1
Vacuum (portable)	1.6

Example:

Lightbulb: 100 W

Iron: 1000 W

If we compare the power rating of a light bulb and an iron that is on for the same length of time, the iron will use _____ more energy.

Kilowatt-hours

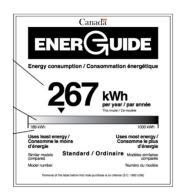
Electrical energy used by an appliance over a period of time is measured in _____ (kWh). We can find this quantity by first looking at the power rating of the appliance and by measuring the amount of time the load has been used.

Example: If you used a 1.8 kW dishwasher for 2.0 hours, how many kilowatt-hours of electrical energy would you have used?

Example: If a 1600 W vacuum has been turned on for 30 minutes, how many kilowatt-hours of electrical energy would have been used?

In our homes and in buildings, we are able to measure the amount of electrical energy used by using a _______. A smart meter is able to measure how energy use changes in a building over the course of a day.

Sustainability


Many appliances that we buy are able to tell us how much energy it uses through two labels:

- labels
- ______ ® label

What is the EnerGuide label?

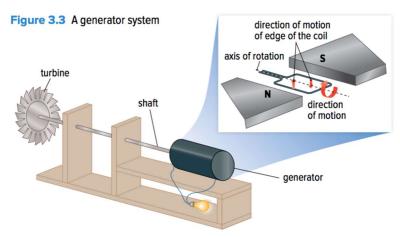
This is a label that gives details about the _____ of ____ that an appliance uses during _____ of normal use

- Large number: Shows how much energy is used in one year of normal use
- Shaded bar: Shows how the appliance compares with similar ones on the market
- Numbers on the shaded bar: Gives a range of efficiency for yearly energy use

What is the ENERGY STAR ® label?

This is a label that is located on appliances. It tells us if a product is an
______ appliance. Appliances with this label use
______ energy compared with a standard product in the same category.

In our homes, we may have appliances that continue to use energy even if it is not on. This is called a _______.


- A phantom load occurs when _____ energy is being on a device when it is turned
 - Appliances in stand-by mode (TVs, computers) are actually "on" and have phantom loads
 - Phantom loads account for about 900 kWh of energy use each year in the average home

In order to save energy, unplug your devices when not in use!!

Generating Electrical Energy

- _____: steam, water, or wind will cause the turbine to spin
- ______: The shaft connects the turbine to the generator; if the turbine spins, the shaft spins
- ______: Kinetic energy from the shaft is transformed into electrical energy in the generator

In BC, much of our energy is supplied through ______ energy

- _____ station: will use the kinetic energy from the water as it flows downhill to turn a turbine in order to generate electrical energy

Water flowing through a dam spins giant turbines, which spin a generator to produce electrical energy.

- _____ station: water flowing freely in a river turns a turbine

Other ways of generating electrical energy:

- ______: kinetic energy of the wind is transformed into electrical energy as the wind moves the turbine of the generator system
- energy into electrical energy. The solar energy is absorbed by the electrons in the photovoltaic cells which allows them to flow.

- _____: Steam from the Earth's crust can be used to turn turbines

in the generator system.

