Science 9

Scientific Method Lab

Name:
Date:
Block:

ut different amounts of	are combined?	
ypothesis:		
the same amount of vinegar is combined with	baking soda, THEN what will happen is	
ECAUSE		
perimental Design:		
kperimental Design: 1. Materials		
	•	
1. Materials	•	
1. Materials		
1. Materials	•	

- a) CLEAN everything you'll be using (it may be contaminated with other chemicals)
- b) Use the graduated cylinder to measure 50.0 mL of vinegar. Carefully pour the 50.0 mL of vinegar into the Erlenmeyer flask.

Meniscus

- i. Use the eye dropper to be as EXACT as possible!
- ii. Make sure you are reading the correct number of mL on the graduated cylinder...

How many mL would this be? ___ The CURVED LINE a liquid forms at its top in a graduated cylinder is called a The correct liquid measurement is the number at the of the meniscus curve!!!!

c) Use the digital scale to measure 2.0 grams of baking soda

- i. Turn digital scale ON
- ii. Make sure it is set to read in GRAMS
- iii. Put a weigh boat on it, then set it to ZERO (or TARE)
- iv. Add baking soda, using the scoopula to be as EXACT as possible
- d) Bend the weigh boat and pour the baking soda into the balloon.
- e) Carefully place the balloon on the mouth of the Erlenmeyer flask, then tip the balloon over so that the baking soda falls in to the vinegar
- f) Hold on to the base of the balloon so that the carbon dioxide that is produced is trapped.
- g) Use a ruler to measure out the height of the balloon from the opening of the Erlenmeyer flask to the top of the balloon
- h) Repeat these steps for the baking soda measures of 4.0 g and 6.0 g.

- 3. Safety Considerations
 - What safety hazards are there? What precautions should you take?
 - What safety equipment should you use and why?

Experiment:

Now carry it out!

Data & Observations:

Suggestion: Use a RULER to measure the height of each balloon. Use a table to compare the results:

Amount of Vinegar	Amount of Baking Soda	Height of Balloon when Baking Soda and Vinegar were combined (Quantitative Observations)
50.0 mL	2.0 g	
50.0 mL	4.0 g	
50.0 mL	6.0 g	

What are some **qualitative observations** you can make from this experiment? Discuss at least two qualitative observations in your response

Error Analysis:

What is a source of error?

Discuss the changes and suggestions you would make to the procedure in order to improve the experiment to get better results. A source of error is issues with the procedure of a lab that may introduce errors or cannot be controlled for, but perhaps improved upon. These could include:

- a) Impurities (from previous experiments, or that cannot be completely rid of)
- b) Human reaction time
- c) Limitations to measuring techniques (i.e. 1 drop can you be certain that each drop size is the exact same?)
- d) Etc...

What is NOT a source of Error?

- a) Avoid using human errors
- b) Measuring improperly
- c) Malfunctioning equipment
- d) Mistakes or oversights on the part of the scientist
- e) Not following procedure
- f) Punching numbers into your calculator incorrectly
- g) Etc...

How may these sources of error affect your results? Be specific!

Emerging	Developing	Proficient	Extending
Safety hazards and equipment	Safety hazards and equipment	Safety hazards and equipment	Safety hazards and equipment
are not accurately identified	are somewhat accurately	are accurately identified	are accurately identified and
	identified		explanations of precautionary
Hypothesis does not relate to		Hypothesis is relevant to the	measures are accurately
the question and explanation is	Hypothesis somewhat relates to	question, though, explanation	identified
not relevant	the question and a brief	needs to be expanded on	
	explanation is provided		Hypothesis is relevant to the
Not all data recorded is relevant;		All data recorded is relevant.	question and provides a
a few key pieces missing. Units	Most data recorded is relevant,	Most units of measurement are	reasonable scientific explanation
of measurement are missing or	but some is still missing. Some	included.	
incorrect.	units of measurement are		All data recorded is relevant. All
	included.		units of measurement are
			included.

Clean-Up:Clean up your station and call the teacher over for your lab clean-up check

Emerging	Developing	Proficient	Extending
The lab may be started on time	The lab is started on time but is	The lab is started on time and	The lab is started on time and
but is not completed before the	not completed before the	completed by the designated	completed efficiently. The lab is
designated end time. Significant	designated end time. Some	end time. The lab is completed	completed independently,
teacher assistance is required.	teacher assistance is required.	with minor teacher assistance.	without teacher assistance.
Equipment is rarely handled	Equipment is occasionally	Equipment is mostly handled	All equipment is handled
correctly/safely. Lab is	handled correctly and safely. A	correctly and safely.	correctly/safely. Safety goggles
completed with a few safety	few reminders are needed to	Safety goggles are almost always	are worn at all times. All
mistakes. A few reminders are	keep safety glasses on.	worn. Almost all equipment is	equipment is cleaned and
needed to keep safety glasses	Some equipment is properly	properly cleaned/returned. The	returned. The lab bench is wiped
on.	cleaned/returned. The lab bench	lab bench is wiped down and	down and clean.
Reminders are needed to return	is wiped down.	clean.	
equipment.			The lab is conducted
	The lab is conducted by certain	The lab is conducted between	collaboratively between your
The lab is conducted by certain	individuals, while the other	group members, but someone is	group members. Everyone is
individuals, while other	members of the group observe.	taking the lead. Everyone is	treated equally and with
members are off task.	Everyone is treated with respect.	treated equally and with	respect.
		respect.	

Variables:

What was the **independent variable** in this experiment?

What was the **dependent variable** in this experiment?

What was the **controlled variable** in this experiment?

Conclusion

Write a **short paragraph conclusion** about this lab. Be sure to answer these questions in your paragraph:

- a. What did you discover?
- b. Was your hypothesis supported or not supported?
- c. What factors may have affected your results?
- d. If you were to redo the experiment, what changes would you make?
- e. What can you conclude in this experiment?

Emerging	Developing	Proficient	Extending
The student cannot connect	The student makes some	The student correctly connects	The student correctly connects
their observations and data to	connections between their	their observations and data to	their observations and data to
their hypothesis. The students	observations, data, and	their hypothesis. The student	their hypothesis. The student
lack understanding of the	hypothesis. The student has	can accurately identify the	can clearly articulate the
connection between variables.	some understanding of the connection between variables.	relationship between variables.	relationship between variables.
Suggested procedural		Procedures to improve the	Very specific procedures are
adjustments lack concrete detail and/or are unrelated to the errors identified.	Procedures are described to improve the accuracy and precision of the lab, but lack detail or aren't entirely related	accuracy and precision of the lab are described in some detail. The recommendations mostly correspond to the errors	described to improve the accuracy and precision of the lab. The recommendations correspond to the errors
Many grammatical errors; ideas are presented in a jumbled	to the errors identified.	identified.	identified.
manner. Little scientific vocabulary is used correctly.	Some grammatical errors; ideas presented somewhat logically. Some scientific vocabulary is used correctly.	Few grammatical errors; ideas presented logically. Scientific vocabulary is used correctly.	No grammatical errors; logical flow of ideas. Scientific vocabulary is used correctly.