CHEMISTRY II

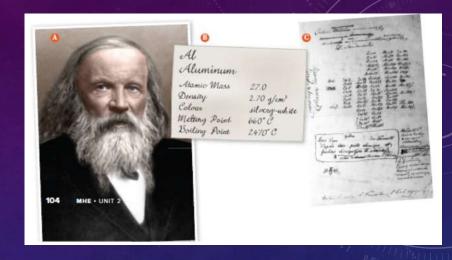
- 1. ELEMENTS
- 2. PERIODIC TABLE
- 3. PROPERTIES OF ELEMENTS

ELEMENTS

Elements are...

- The basic <u>building blocks</u> of <u>matter</u>
- Made up of one type of <u>atom</u> (cannot be broken down further)
- About <u>90</u> elements occur naturally (carbon, silver, oxygen)
- Some elements are <u>synthesized</u> in labs
- Have varying properties

ELEMENTS

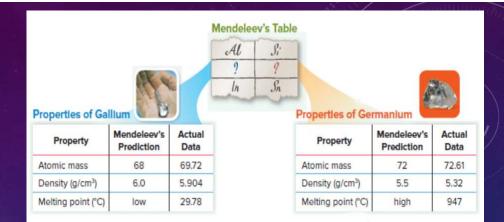

Each element has a

- Chemical <u>name</u>
 - Based on Latin words, countries, names of famous scientists
- Chemical <u>symbol</u>
 - One or two <u>letters</u> (first letter is capitalized)
 - Synthetic or unnamed elements have placeholder names or three-letter symbols

Video:

https://www.youtube.com/watch?v=fPnwBITSmgU&ab cha

nnel=TED-Ed



1860s: Dmitri Mendeleev

- Looked at different ways to <u>organize</u> the elements
- Wrote <u>properties</u> of elements on cards so that he could rearrange them and <u>compare</u> properties ("chemical solitaire")
- Properties included <u>atomic mass</u> (average mass of an atom of an element), <u>density</u>, and <u>melting point</u>.

Mendeleev's periodic table:

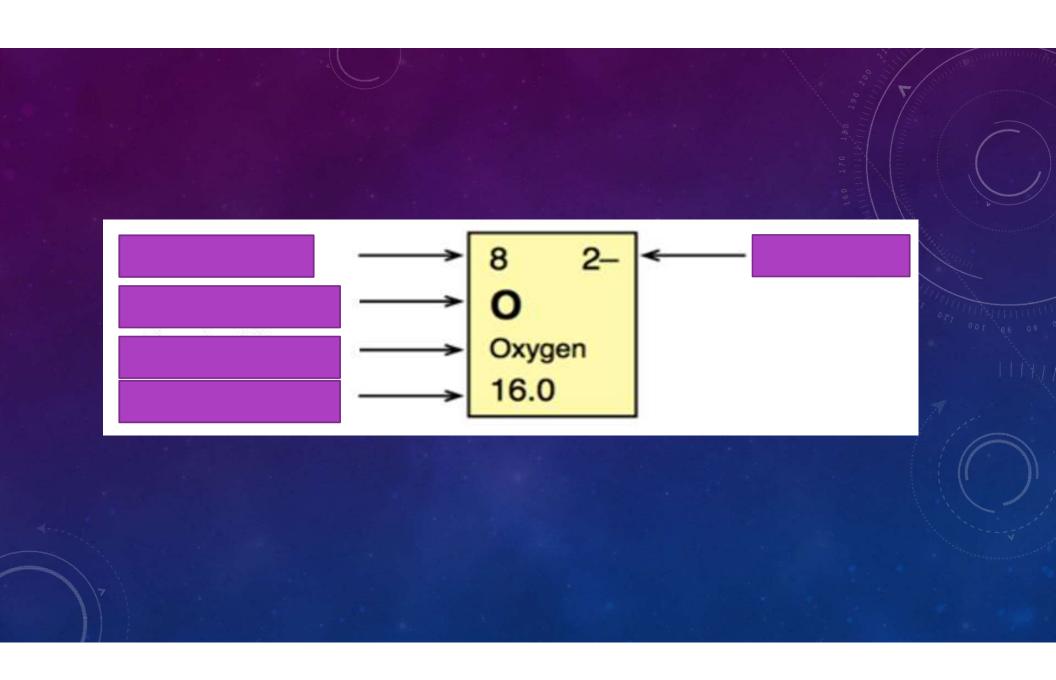
- Ordered the elements by increasing atomic mass.
- Grouped elements into "<u>families</u>" based on similar properties (density, melting point)
- Left gaps in his periodic table to <u>predict</u> the existence of elements not yet found yet
 - These missing elements would have properties similar to other elements in the same families.

Mendeleev's periodic table was ordered by increasing atomic mass:

 Did not work perfectly – some elements were <u>out of order</u> so they would fit in a family that had similar properties

Mende	leev's	Periodic	Table
LATE OF LICENSE	The same of the same		I AND DO I AND

Series	Group I	Group II	Group III	Group IV	Group V	Group VI	Group VIII	Group VIII
1 2	H+1 Li+7	Be=9.1	8-11	042	N+14	0-16	F-19	
3 4	No-23 K-39.1	Mg=24.4 Ca=40	A0=27 =44	SH28 TH48.1	Pv31 V×51.2	S=02 Cr=52.3	0H05.5 Mn=65 {	Fe=56, N=50.5, Co 59.1, Cu 63.3.
6	(Cu)=63.3 Rb=85.4	Drw85.4 Srw87.5	- +68 Y+89	==72 Zr=90.7	Apr75 No-942	Se-79 Mo-95.9	5r-30 100 {	Rh=103, Ru=103.8, Pd=106, Ag=107.9
8	(Ag0=107.9 Co=132.9	064112 Bav137	In=113.7 La=138.5	Sn-118 Cev141.5	Sb=120.3 Di=145	Te=125.2 —	H126.9:	
9 .	(-)	_	Yb=173.2	-	Te+182.8	W=184		ir=193.1, Pt=194.8, Os=200, Au=196.7
11 12	(Au)+198.7 —	Hg=200.4 —	TH204.1	Pb=208.9 Tb=230.4	Bi-208 —	U+209		


Modern periodic table is ordered by increasing atomic number.

- Henry Moseley: scientist that determined an element's atomic number (the number of protons in an atom)
- When elements are arranged according to <u>increasing</u> atomic number, the <u>elements</u> fit perfectly and do not require re-ordering

Video:

https://www.youtube.com/watch?v=rz4Dd1I_fX0&ab_chan

nel=AsapSCIENCE

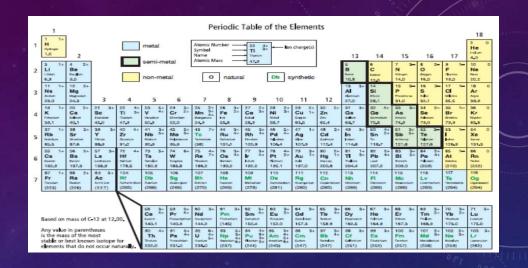
We can use the information from the periodic table in order to find information about subatomic particles.

Name	Charge	Location	To find the number of particles for each elements, look at the
Proton	<u>Positive</u>	<u>Nucleus</u>	Atomic number
Neutron	<u>Neutral</u>	<u>Nucleus</u>	Atomic mass – atomic number
Electron	<u>Negative</u>	Electron shells/rings	<u>Atomic number</u>

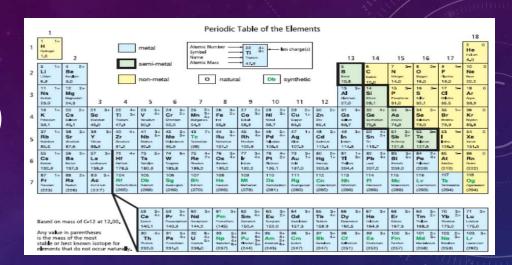
METALS

On the periodic table, there are three categories shown on the

periodic table:


Metal:

- Shiny and hard (typically)
- Malleable and ductile
- Conducts electricity and heat
- Found to the left of the <u>zigzag</u> line on the periodic table


NON-METALS

Non-metal:

- Not shiny, malleable, or <u>ductile</u>
- Poor conductor of electricity and heat
- Found to the <u>right</u> of the zigzag line on the periodic table
- Generally gases or brittle, dull solids.

SEMI-METALS (METALLOIDS)

Semi-metals (Metalloids):

- Have physical and chemical properties of <u>both</u> metals and nonmetals
 - Shiny (like metals)
 - Brittle and not ductile (like non-metals)
 - Poor conductors of heat and <u>electricity</u> (like non-metals)

The modern periodic table can also be organized into:

- Groups (Family) (1-18): A vertical column of elements
- Periods (1-7): A horizontal row of elements

ALKALI METALS (GROUP 1)

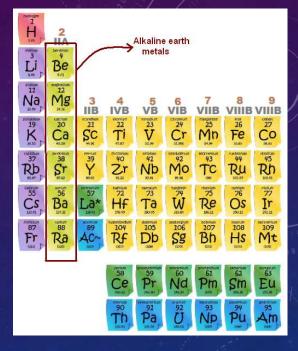
- Shiny and soft
- Highly reactive with water and oxygen (often stored in a nonreactive liquid such as oil)

Na Sodium

K Potassium

Rubidium

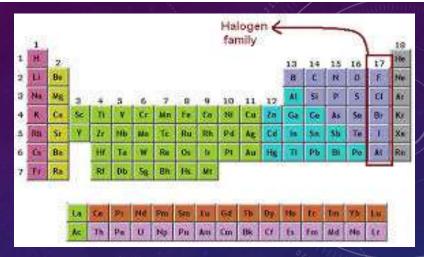
S Cesium


Francium

Video:

https://www.youtube.com/watch?v=m55kgyApYrY&ab_channel=scientist303

ALKALINE EARTH METALS (GROUP 2)


- Shiny and soft (but not as soft as alkali metals)
- Highly reactive (but not as reactive as alkali metals)

Video:

https://www.youtube.com/watch?v=O6DaCYKh77E&ab_channel=DavidRead

HALOGENS (GROUP 17)

 Highly reactive (therefore usually found in nature as part of compounds)

Video:

https://www.youtube.com/watch?v=u2ogMUDBaf4&ab_channel=OpenLearnfromTheOpenUniversity

NOBLE GAS (GROUP 18)

- Odourless, colourless gases
- Least reactive of all of the elements
 - Helium and neon never form compounds
 - Other noble gases form compounds with great difficulty