Science 9 Investigating Chemical Changes in Matter

Name: Date: Block:

Objectives:

- 1. To observe chemical changes in matter
- 2. To recognize the signs of a chemical change

Hypothesis:

If I observe _____

then a chemical change has occurred because _____

Lab Safety

- Avoid contact with chemical solutions with eyes and all body tissues
- Be sure to wear safety goggles and a lab apron at ALL times when in the lab
- Be sure to tie up long hair and roll up long sleeves
- Closed-toed shoes and long pants need to be worn during the lab
- After the lab is complete, be sure to wash hands thoroughly with soap and water

Station 1: Alka Seltzer with HCl

- 1. Take a half Alka Seltzer tablet and put it in a small beaker
- 2. Measure 10 mL of 3.0M HCl using a graduated cylinder and pipette
- 3. Pour the HCl into the small beaker with the Alka Seltzer tablet
- 4. Watch for 2 minutes and record observations in data table
- 5. Wash the solution down the sink and flush with plenty of water

Station 2: Magnesium with HCl

- 1. Using the tweezers, take a piece of magnesium and put it in a small beaker
- 2. Measure 10 mL of 3.0M HCl using a graduated cylinder and pipette
- 3. Pour the HCl into the small beaker with the magnesium strip
- 4. Watch for 2 minutes and record observations in data table
- 5. Wash the solution down the sink and flush with plenty of water

Station 3: Milk of Magnesia with Phenolphthalein

- 1. Using a graduated cylinder, measure 10 mL of Milk of Magnesia and pour it into a small beaker
- 2. Add 5 drops of phenolphthalein
- 3. Record observations in data table
- 4. Wash the solution down the sink and flush with plenty of water

Station 4: CaCl₂ + Na₂CO₃ + bromothymol blue

- 1. Using a graduated cylinder, measure 10 mL of water and pour it into a small beaker
- 2. Using the weigh boat and scale, scoop 0.50 g of CaCl₂ and place it into the small beaker with water. Stir the solution with a stir rod. Add 2 drops of bromothymol blue.
- 3. Using a graduated cylinder, measure 10 mL of water and pour it into a second small beaker
- 4. Using a weigh boat and scale, scoop 0.50 g of Na₂CO₃ and place it into the second small beaker with water. Stir the solution with a stir rod. Add 2 drops of bromothymol blue.
- 5. Pour the two solutions together
- 6. Record observations in data table
- 7. Wash the solution down the sink and flush with plenty of water

Data & Observations:

Mixture	Qualitative Observations	
Station 1:		
Alka Seltzer		
+ 10mL 3.0M HCl		
Station 2:		
Magnesium +		
10mL 3.0M HCl		
Station 3:		
10mL Milk of Magnesia		
+ 5 drops phenolphthalein		
Station 4:		
CaCl ₂ solution + 2 drops bromothymol blue		
+ Na ₂ CO ₃ solution + 2 drops bromothymol blue		

Questioning and Predicting	Emerging	Developing	Proficient	Extending
	Hypothesis does not relate to the question and explanation is not relevant	Hypothesis somewhat relates to the question and a brief explanation is provided	Hypothesis is relevant to the question, though, explanation needs to be expanded on	Hypothesis is relevant to the question and provides a reasonable scientific explanation
	Not all data recorded is relevant; a few key pieces missing.	Most data recorded is relevant, but some is still missing.	All data recorded is relevant. An attempt at scientific vocabulary is used	All data recorded is relevant and descriptive. Scientific vocabulary is properly used in the correct context

	Emerging	Developing	Proficient	Extending
-	The lab may be started on	The lab is started on time but is	The lab is started on time and	The lab is started on time and
	time but is not completed	not completed before the	completed by the designated end	completed efficiently. The lab
	before the designated end	designated end time. Some	time. The lab is completed with	is completed independently,
	time. Significant teacher	teacher assistance is required.	minor teacher assistance.	without teacher assistance.
	assistance is required.			
ΪÜ		Equipment is occasionally	Equipment is mostly handled	All equipment is handled
Planning and Conduct	Equipment is rarely handled	handled correctly and safely. A	correctly and safely.	correctly/safely. Safety
	correctly/safely. Lab is	few reminders are needed to	Safety goggles are almost always	goggles are worn at all times.
	completed with a few safety	keep safety glasses on.	worn. Almost all equipment is	All equipment is cleaned and
	mistakes. A few reminders	Some equipment is properly	properly cleaned/returned. The	returned. The lab bench is
	are needed to keep safety	cleaned/returned. The lab	lab bench is wiped down and	wiped down and clean. The
	glasses on.	bench is wiped down.	clean.	lab equipment is reset for the
	Reminders are needed to			next group.
	return equipment.	The lab is conducted by certain	The lab is conducted between	
		individuals, while the other	group members, but someone is	The lab is conducted
	The lab is conducted by	members of the group observe.	taking the lead. Everyone is	collaboratively between your
	certain individuals, while	Everyone is treated with	treated equally and with respect.	group members. Everyone is
	other members are off task.	respect. Students are	Students are on task and focused	treated equally and with
	Students are often off task	sometimes off task and need to	throughout the lab.	respect. Students are on task
	and need many redirections	be redirected back to the lab.		and focused throughout the
	back to the lab.			lab.

Analysis/Conclusion:

- 1. What observations lead you to believe that a chemical reaction occurred? Be specific and provide evidence to each station
 - a. Station 1:
 - b. Station 2:
 - c. Station 3:
 - d. Station 4:
- 2. Describe and discuss **two** examples of chemical changes you experience in everyday life. Be sure to provide evidence and discuss why your example is a chemical change.

a.

3. In your own words, discuss how chemical changes are different from physical changes. Use examples to supplement your response.

Write a short paragraph conclusion (about 5 – 6 sentences) about this lab. Be sure to answer these questions in your paragraph:

- a. What did you discover?
- b. Was your hypothesis supported or not supported?
- c. What factors may have affected your results?
- d. If you were to redo the experiment, what changes would you make?
- e. What can you conclude in this experiment?